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Two very different numerical methods which have been used to
simulate high Reynolds number two-dimensional fiows are compared
tor the first time. One method, the pseudo-spectral method, is
fundamentally based on the Eulerian description of fluid flow and the
other, the contour surgery method, is inherently Lagrangian. The former
makes use of a continuous distribution of vorticity, while the latter, a
theoretically inviscid method, makes use of a discrete distribution.
A comparison is nevertheless attempted in a model problem wherein
the initial varticity distribution is continugus. We examine the stripping
of an initially circular vortex by applied adverse shear in doubly periodic
geometry. The constraining geometry causes the flow to become very
complex, placing great demands on both computational methods. The
surprise is that as few as eight discrete levels of vorticity in contour
surgery give results which are quantitatively close to those cbtained
by the pseudo-spectral method at high resolution. Advantages and
shortcomings of both methods are noted.  © 1993 Academic Press, Inc.

1. INTRODUCTION

Experiments in computational fluid dynamics are playing
a central role in understanding two-dimensional flows. Such
flows are idealizations of numerous practical situations,
particularly geophysical ones, owing to stratification and
rotation-induced strong layerwise two-dimensionality,
However, these flows are difficult to examine in a clean
laboratory experiment, whereas they are becoming
increasingly easy to generate on a computer. In addition,
the power of modern scientific computers enables one to
address questions related to the dynamics of small-scale
structures by unobtrusively probing the flow at a high den-
sity of points and at a high frequency, something virtually
impossible at present in laboratory experiments.

There exists a great variety of numerical algorithms which
have been developed for the numerical simulation of two-
dimensional flows. In theoretical studies of high Reynolds
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number (inertial) flows, though, where the fluid is not
constrained by complicated boundaries, this variety is
considerably smaller.

The most popular algorithm is certainly the pseudo-
speciral method [ 1] which is suited for periodic geometry or
simple boxes. In this method, the variables of the flow (vor-
ticity, velocity) in the physical domain are represented as
complex coefficients in a dual spectral domain for which a
convenient basis is provided by the family of eigenmodes of
the Laplace operator (the Fourier basis in a doubly periodic
plane). The spatial derivatives can be estimated with high
accuracy by simple multiplications of the spectral coef-
ficients, and the solution of the Poisson problem is elemen-
tary. The calculation of the nonlinear advective terms which
would lead to convelutions in the spectral domain is per-
formed in the physical domain, again by simple multiplica-
tions. The overall speed of the algorithm relies on the exist-
ence or nonexistence of fast transforms between the physical
and the spectral domains. The algorithm is thus much more
efficient in doubly periodic planar geometry, where fast
Fourier transforms are available than, say, in spherical
geometry for which there exist only half-fast transforms.

A major feature of this method, the fact that it provides a
uniform spatial resolution at the scale of the smallest
resolved structure, turns out also to be its major limitation.
In practical circumstances, where small scales are generated
within a very small portion of the physical domain, a con-
siderable waste of computer time occurs since the algorithm
spends the same amount of time computing fluid motions in
all parts of the domain. Also, there is no consideration given
to the considerable time-vanability of the flow com-
plexity—a very quiescent flow should require less computa-
tion than a very agitated one. The source of this faulty
behavior is that the algorithm is based on an Eulerian
representation and thus does not explicitly incorporate the
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fundamental property of vorticity conservation on ftuid
particles.

An early attempt to provide a Lagrangian formulation
was the vortex method. In this method, the flow (the
vorticity distribution) is represented by a cloud of point
vortices. [t has been applied to a number of situations with
localized structures and seems particularly suited for the
dynamics of vortex sheets. Details of this method and its
applications may be found in the review by Leonard [2].

A more recent method, originally proposed by Zabusky
et al. [37, is contour dynamics, a method based on the obser-
vation that the evolution of a patch of uniform vorticity is
fully described by the evolution of its bounding contour. In
principie, contour dynamics thereby reduces a two-dimen-
sional problem to a one-dimensional problem. The velocity
anywhere in the fluid, particularly on the contours, where it
is needed for the contour’s evolution, is determined by
inversion, using Green's function of the associated Laplace
operator. The method is not limited to a patch of uniform
vorticity: several contours can be nested in a stack, thus
providing an approximation of distributed vortices.

Typically, the contours of vorticity patches generate very
intricate small-scale structures through the noniinear
cascade mechanism of filamentation [4, 57. The method is
able to cope with this problem by a series of subsidiary algo-
rithms handling the parameterization of the contours and
the removal of sufficiently fine-scale filamentary structures.
The most advanced version of contour dynamics, known as
contour surgery, is fully documented in [5].

The validity of this method has, however, often been
questioned up to very recently. A common criticism is that
the dynamics of uniform patches with their discontinuous
distribution of vorticity could produce artifacts which are
irrelevant to the dynamics of distributed vortices. Tt has
even been argued [10] that contour dynamics could
produce spurious gingularities. This latter charge has been
cleared completely in [11, 127, and the regularity of con-
tour dynamics has received a mathematical proof in [18].
There has remained, however, the question of just how well
a continuous distribution of vorticity can be modelled using
discrete vorticity jumps in contour surgery. The only con-
vincing way to answer this question, it seemed to us, was by
performing a direct compatison between contour surgery
and the pseudo-spectral method, the results of which are
reported here.

This comparison is based on one selected case which is
the stripping of an initially circular vortex by an external
shear flow in doubly periodic planar geometry. This
geometry is ideal for the pseudo-spectral method, though it
is significantly less convenient for the contour surgery
method and some adaptation of the existing contour
surgery method has been necessary. Additionally, for the
initialization of the contour surgery calculations, it is
necessary to discretize the continuous vorticity profiie of the
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starting vortex (8 and 16 discrete levels are used here). The
resolution used in the pseudo-spectral experiments is high
enough to resolve many of the filamentary structures which
are typical of contour dynamics experiments. The duration
of the temporal integration is also long enough to allow very
complicated dynamics to occur.

In Section 2, we present the numerical algorithms used in
this study and the initial conditions for the investigated case.
We describe, in particular, the procedure for the discretiza-
tion of continuous vorticity profiles used to initialize the
contour surgery experiments. In Section 3, we present a
movie of the temporal development. Section 4 contains the
central resuits of this article. Here we show the remarkably
close agreement obtained between the results calculated by
the two methods. Enlargements of details are necessary to
analyze slight discrepancies. Further discussion and some
concluding remarks are offered in Section 5.

2. DESCRIPTION OF THE EXPERIMENTS

2.1. The Test Problem

The experiments are conducted in a hypothetical two-
dimensional, incompressible fluid in the nearly invisid limit.
For this fluid, vorticity is a natural vanable owing to its
material conservation in the absence of dissipation. Both
numerical models simulate the vorticity equation

dw dar
E+J(w,cu)+U5;=D(w) (1}

in a doubly periodic box [—mn,r]x[—nr =] Here,
w=2dAp, Y is the streamfunction, U(y) is an imposed,
external mean flow, and D{w) is a dissipation operator
(described later in this section).

A single, initially circular vortex is subjected to adverse
shear, I/ =274y, with the dimensionless shear A chosen to
produce severe stripping of the peripheral vorticity layers
(A =0.11). The initial radial vorticity profile, Fig. 1, is given
by

if 0<grgl,

_ (1 +cos mr),
w(r) {0, o>, @)

corresponding to a broadly distributed initial distribution of
varticity. Such distributions are particularly sensitive to the
effects of shear [13]. One may note that the imposed shear
has, in fact, infinlte vorticity at the periodic boundary
y=—n and y=mn This vortex sheet, however, has no
impact on the dynamics inside the domain since it is fixed in
position and, in practice, no part of the interior vortex
reaches this periodic interface. In the pseudo-spectral code,
the sheet is spread out over a thin layer of width 0.05(2=),
where the shear is A= —2.09. Numerical stability is
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FIG. 1. The initial radial vorticity profile used in the experiment.

obtained by filtering out the vorticity within this region. The
value of the internal shear A is just under the critical value
A.=x=0.115, above which the vortex is torn apart.

2.2, Simudation by Pseudo-Spectral Method

We are not going to review here the pseudo-spectral
method beyond the general ideas given «in Section 1. The
reader is referred to [1] for a comprehensive discussion.
Our scope is only to cover the relevant features pertaining
to our calculations.

The method used here calculates the Jacobian in physical
space as

o dw 8y do

o) = 5% "y

where the spatial derivatives are calculated in spectral space.
There exist formulations of the Jacobian leading to faster
calculations, [14], but we can here directly incorporate the
mean flow without any Gibbs effects by adding U{y) to
—oyjoy.

Since the investigated case exhibits a symmetry with
respect to the center of the domain, all the Fourier coef-
ficients for vorticity and streamfunction are real and those
for the velocity components are pure imaginary. Taking into
account this property, an appropriate recombination of the
Fourier transforms allows one to reduce the amount of
computation by about a factor of two.

The resolution used is 1024 x 1024 in the physical
domain. The spectral representation is truncated within a
circular domain in the Fourier plane, that is, all the Fourier
modes with wavenumbers |k? + 72" > 507 ‘are discarded.
This truncation tries to preserve isotropy in spite of the
basic squared periodicity. It also induces a partial de-alias-
ing of the nonlinear terms. Full de-aliasing is not performed
because it was found that, using a physical grid of 512 x 512,
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the correction then introduced was of the order of the trun-
cation error of the computer. This is a fortiori true here.

Dissipation of enstrophy is performed by the hyper-
viscosity operator

DHwy= vy 4’

with vy =4.6 x 10~ ?°. Similar parameterizations of dissipa-
tion and subgrid turbulence are widely used in two-dimen-
sional computational fluid dynamics. They aim at dissipat-
ing the enstrophy at the end of its nonlinear cascade to
small scales, providing a well, into which the cascaded
enstrophy is lost. While a better parameterization of the
unresolved enstrophy cascade may be possible [15], this
dissipation process is easy to implement, computationally
inexpensive, and very selective, requiring one to devote only
a small spectral range to dissipation. Although the harm-
lessness of this approximation to the physics has yet to be
proven rigorously, there exists no clear counter indication
as far as the flow is essentially inertial. 1t can be argued that
there are no viscously driven instabilities in two dimensions
that would be sensitive to such a parameterization, The
flow is indeed governed by the energy-containing large-
scale motions. A conservative standpoint is to say that the
spurious effects of hyperviscosity, if any, should be
contained within the portion of energy dissipated. We will
sec that this effect is negligible for the resolution used here.

Time-stepping is done with an Adams—Bashforth scheme
with an explicit treatment of the linear dissipative term. For
a variable z(t) governed by the equation

dz(1)
dt

= Fit)—vz(1),

where F is an arbitrary nonlinear operator depending on
z(¢#) and other variables and v 1s a fixed damping coefficient,
the Adams~Bashforth scheme is

t+Aty=e " (z(r) + % (3F(ty—e™ """ F(r— df])).
(3}

This scheme is readily applied to the evolution equation of
Fourier coefficients derived from Eq. (1). The first step is
done using a hall Euler step and a half leapfrog step. The
Adams-Bashforth scheme is second-order in time and
shows remarkable stability properties. It does not produce
any spurious numerical oscillations like the leapfrog scheme
and thus does not require a corrective step during the
temporal integration. The time step is 4¢=5x 10~* for the
experiment described below.

The CPU cost of the code, including diagnostics not
presented here, is 1.1 s per time step using one processor on
a Cray 2. The experiment required 50,000 time steps.
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2.3, Simulation by Contour Surgery

The basic ideas behind contour dynamics and its exten-
sion to surgery are reviewed in [5]. Here, we review only
the basic definitions of the numerical parameters then pass
to two new considerations: (1) the extension of the algo-
rithm to doubly periodic geometry; and (2) the optimal
discretization of a continuous vorticity distribution into a
finite number of uniform vorticity regions.

The operation of the contour surgery algorithm is
governed by three principal parameters: the time step 4,
the typical distance between adjacent nodes comprising a
contour u, and the scale at which filamentary vorticity
is removed §. Unlike the pscudo-spectral method, this
Lagrangian method has no analogous CFL criterion. What
governs accuracy is the maximum rate of stretching or
twisting [ 11] along a contour; experience indicates that this
is typically comparable to or less than the peak vorticity
magnitude in the flow [5, 11]. For peak vorticity 2n, the
recommended time step 1s 41 =0.05, and this is used here.
Note that the time step is one hundred times larger than
that used in the pseudo-spectral experiment.

The node spacing is variable in time and is proportional
to u and inversely proportional to the two-thirds power of
a weighted sum of nearby curvature values. This rela-
tionship was chosen to link consistently with surgical dis-
sipation at the scale & = tu’L, where L is a fixed parameter
setting the overall size of the vorticity distribution (here,
L =1, the initial vortex radius). Surgery selectively removes
smali-scale features: thin filamentary structures are removed
while sharp vorticity edge gradients are not. This has impor-
tant ramifications in the comparisons presented below.

The doubly periodic algorithm is obtained from the singly
periodic one {described in [5]) by periodically extending
and then summing the singly periodic Green function,
taking into account the requirement that the total circula-
tion must vanish in any basic box. The singly periodic
Green function is

G{x, p)=(4m)~" log[cosh(y) - cos(x)], (4)
where x and y here stand for the coordinate differences
between the source and the evaluation points. We construct
the doubly periodic Green function from

Glx, y) = Grlx, y) + G (x, y)

+ Z {0 (x, ¥+ 2nn)— G (0, 2xn)

n=1

+G,{x, y—2mn)— G0, —2nm)}, (5)
where G, is a regular {non-singular) function chosen to
ensure zero total circulation in cach 2x x 2x box. It satisfies
V2G , = C for some constant C (G, corresponds to uniform
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vorticity within the box). Since the rest of &, 1s periodic in
x, though not in y, GG, must depend on y alone, and hence
the only form it can take is Gz = 1Cy” The constant C is
determined from the constraint of zero total circula-
tion—the area integral of VG, over any box must vanish.
We find that C is just the negative of the inverse area of the
box, C= —1/4n”,

A closed form expression for the sum over G, in the
expression for G is not known, but in practice it is sufficient
to take just the first two terms in the sum. The first neglected
term is then Oe ™)} ((10~7). More directly, a test
calculation using the first three terms could not be dis-
tinguished from a calculation using two.

The second new feature is the method for approximating
a given continuous distribution of vorticity by a finite
number of nested, uniform regions of vorticity. The method
seeks the discrete distribution of vorticity which is closest to
a given continuous distribution .in a least-squares sense,
subject to the constraint that the total circuiation of the two
distributions is the same. In other words, the object is to find
the areas A4; and uniform vorticities «; of a superposition
of N disks which minimize the function

F(AL, oy Aps 014 oy @Ty)

Amﬂl
=] " [o() - a1 da, (6)
subject to the constraint
GlA,, ., Anr @, sy Wy)
Amm
=[ o) -a()]da=0. ()

where w(A} is the given continuous distribution as a func-
tion of area ( =nr? here) and @(.4) is the unknown discrete
distribution (see Fig. 2). In general, the contour locations lie
along certain contours of constant vorticity within the con-
tinuous distribution. These contours are simply circles for
the initial conditions considered in this paper. [n any case,
the formal solution to the above optimization problem is
obiained by solving the following nonlinear tridiagonal
equation for the contour areas A;:

w{A)) —;f" of4) dA
ToA Ay
1 Ajrg
- a{A}dA, (%)
Aj+ [ AJ J‘AI
subject to the boundary conditions A,=0 and
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FIG. 2. The discrete profile used in the contour surgery experiment
compared to the continuous profife.

An,=A,,,. After obtaining the 4, (using a shooting
method}, the w; arc obtained from

| A -
=) elndatc. 9)

where

1 Amax
C=— A . 1
ANLN w(A) dA (10)

Table I gives the eight- and 16-disk discretization of the
continuous profile used in this paper,

The initial spatial resolution used in the contour surgery
calculations was y = 0.06, corresponding to approximately
105 nodes around a circular contour of unit radius. The
resolution adjusts to the complexity of the flow so that, in
the calculations presented here, the total number of nodes
increases 20-fold. Correspondingly, the computational cost
increases 400-fold. After time r= 20.5 in the eight-contour
calculation, u was increased to 0.09 to case the computa-
tional cost, and after time ¢ = 14.5 in the 16-contour calcula-
tion, p was increased to 0.07. Each calculation required
several days of CPU time on a single processor of a Cray-
XMP, the cost being so great, due to the inefficiency of com-
puting in doubly periodic geometry, In infinite geometry,
the cost would be reduced by a factor of approximately four
(less than a day of CPU would then be required ). The cost
(in seconds) per time step in this case is 4.0 x 1079 times the
total number of nodes squared. For instance, one time step
for 10,000 nodes takes 400 s. Taking into account the faster
processor speed of the Cray-2 used for the pseudo-spectral
caiculation and the exploitation of symmetry therein, both
methods required nearly the same computational resources
in this example.
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TABLEI

Vorticity Levels for an Optimally Discretized Cosine Vorticity
Profile and the Corresponding Vorticity Values in the Continuous
Profile

8 levels 16 levels
r w, olr;} T; w; wir;)
0,.24362437 093678869 0.86056355 0.17537481 0.96487331 0.92601217
0.35075009 0.79966629 0.72594480 0.25021921 0.89151572 0.85330983
043813176 0.66755120 0.59657167 030930349 0.81946864 0.781945%0
051720127 0.54092003 047299345 0.36063998 0.74878786 0.71197962
0.59302441 042039477 0.35594872 040735672 0.67953607 0.6434778%
0.66924549 0.30683055 0.24650015 0.4510956]1 0.61178439 0.57651699
0.75008265 0.20149763 014635482 0.49287885 0.54561428 0.51118494
084391119 0.10653989 005892007 0.53343004 048112030 044758469
0.57332412 0.41841378 0.38583865
0.61307427 035762822 032609544
0.65319810 0.29892736 (.26854025
0.69428897 0.24251784 0.21341187
0.73712446 0.18867060 0.16103303
0.78288466 0.137760t6 0.11187093
0.83372287 0.09034640 0.06668168
0.89493707 0.04738165 0.02698935

Note. 1, is the radius of the jth jump in vorticity in the discrete profile
(ie. ry=(4,/2)"*), w,is the vorticity just inside r;, and ea{r,) is the vorticity
of the corresponding continuous profile at r =r,.

3. THE EXPERIMENT

This section presents a movie of the flow evolution com-
puted by the pseudo-spectral method. Figure 3 shows a
series of vorticity charts extracted from the experiment. The
charts are not regularly spaced in time but show the most
interesting stages of the experiment. The first four are full
views of the periodic box while the other ones are
enlargements of the central region (with scale 1) The
plotted contours are the vorticity levels corresponding to
the steps of the eight-level discretization used in the contour
surgery experiment (see Table I}.

The initial circular shape, Fig. 3a, is rapidly deformed by
the shear and wide arms are expelled on both sides of the
vortex at t=4, Fig.3b. In an unbounded domain, the
expelled vorticity would be pulled away toward infinity, but
here, in a periodic plane, it re-enters across the lateral
boundaries as seen at =7, Fig. 3c. A practical situation
corresponding to this flow is a row of vortices injected in a
shear layer. One also sees that the arms reduce to thin
filaments except near their extremity and that the core of the
vortex tends to align its major axis perpendicular to the
direction of the shear, or at a 45° angle with respect to the
background strain axes. At ¢= 10, Fig. 3d, the re-entering
filament has passed by the vortex and is continuing its
way toward a second turn. The expelled filament is now



292

connected to the vortex by a very small section. It can be
shown that at this stage there exists an approximate func-
tional relationship between the vorticity and the total
streamfunction inside the stripped vortex core so that
J( — 1 4y%, @)~ 0. In other words, the vortex is nearly in
equilibrium with the shear. Another interesting feature is
that the stripping of the external vorticity layers produces
an exceedingly sharp vorticity gradient at the frontier of
the vortex (this effect is even more pronounced in the
correspending contour surgery experiment which we will
come to in Section 4).

As time proceeds further, the flow becomes more
complicated, though more interesting for our purpose. The
complication arises from the interaction of the re-entering
filaments with the vortex core. In the quasi-stationary situa-
tion of Fig, 3d, the small domain near the connection of the
filament to the vortex contains a stagnation point in the
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total velocity [ield, corresponding to a separatrix crossing in
the streamfunction field. In infinite geometry, this stagna-
tion point has little consequence for the ensuing dynamics,
but here it causes a complicated interaction between the re-
entering filament and the vortex core. This filament, being
divided by one of the separatrices stemming from the
stagnation point, splits into two parts near the stagnation
point. One part is cast away to begin a new turn, and
another part is advected along and brought very close to the
flank of the vortex. This phenomenon is ciearly visible at
t=13, Fig. 3e, where one sees also the strong perturbation
induced on the vortex itself.

The next stages of the evolution, Figs. 3fand g, at =155
and t=17.5, involve further splitting and folding of the
filaments around the vortex. The mixing of vorticity
produced here is by no means a down-gradient process, but
falls within the category of Hamiltonian chaos studied by

FIG. 3. Vorticity charts taken from the pseudo-spectral experiment. The plotted contours are those used in the contour surgery experiment with eight
levels. The frame of the charts is the full periodic box for (a) to (d) and the domain [ —0.6x, 0.6n ] x [ —0.6z, 0.6z ] for the other cases: (a} 1=0;(b) r=4;
(cyi=T,(d) t=10; (e}t =13; (£) ¢ =155, (g) 1 =17.5; (h} r =21; () £ =235, (j) ¢ =123,
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FIG. 3—Conrinued
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Ottino and collaborators [16]. Since dissipation acts only
at very small scales, the flow contains a large amount of
detail within the magma of filaments accumulated around
the vortex. There is littie need to point out that this situation
is not a trivial basis for our comparison.

As long as the re-entering filaments stay a distance from
the vortex, their effect on the vortex is very limited. This was
the case during the initial stages of the experiment, < 11,
and becomes true again around (=20, Consequently, the
vortex core, at =21 and ¢=23.5, Figs. 3h and i 1s much
closer in shape to an ellipse than at the previous stage of the
experiment. From 7=20 to r=235, the filaments are
wrapped around the core and are stripped away by the
external shear, much in the same way that the weak external
levels were originaily removed. The shape of the core at
1=123.5 is, in fact, very reminiscent of the shape at t=10
(see Fig. 3d), near the end of the initial stage of the evolu-
tion, in which one sees a quasi-elliptical core lying per-
pendicular to the direction of the shear. It is again possible
to find a functional relationship between the vorticity and
the streamfunction, though in a smalier region than at
t=10. The less intricate structure of the filaments around
the core at = 23.5 than at =21 is due to dissipation and
smoothing of the vorticity profile by the hyperviscosity
arising from the acute thinning of filaments spun around the
vortex core.

The wavy structure of the re-entering filaments is not due
to a kind of Kelvin—Helmholtz instability but is the trace of
their partial folding upon passing near the stagnation point
at an earlier time. This mechanism 1s well illustrated in
Figs. 3f and g.

At r=25, Fig. 3j, which is the final time of the experiment
displayed here, a new phase of strong interaction between
re-entering filaments and the vortex core begins, during
which the voriex again experiences major deformations
from an elliptical shape.

As regards to numerical accuracy, the total enstrophy loss
is 9 % of its initial value, while the total energy is conserved
up to the fifth digit. The dissipation 15, howevet, sufficient to
provide a clear smail-scale cutoff in the energy spectrum
during the whole duration of the experiment, without any
spurious tendency to accumulate enstrophy near the trunca-
tion scale. The evolution is thus basically ineriial, though
the finite resolution and hyperviscosity have stopped vor-
ticity gradient intensification well short of that observed in
the corresponding contour surgery calculations described
below. We will discuss the consequences of this in the
following sections, ‘

4. COMPARISON WITH CONTOUR SURGERY
4.1. Early Time Comparison

Figures 4a-f show six charts taken from the contour
surgery experiment with the eight-contour discretization at
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r=10, 15.5, 17.5, 21, 23.5, and 25. They must be compared
with Figs. 3d and 3f-j. There is clear evidence that the agree-
ment between the two methods is excellent. The structure of
the vorticity field, up to the location of very small-scale
details, is practically the same with both methods at all the
stages of the evolution. If the corresponding charts for
both methods could be superimposed, as is possible on a
viewgraph, the contours would be seen to coincide to a very
good approximation up to ¢ =12 and to stay very close for
the sequel of the evolution, except for some details at the
very latest times. There is no trace of any spurious singular
behavior in contour surgery that would affect the largest
scales of the flow. This agreement is all the more remarkable
as the problems studied are not really identical: the
continuous profile of vorticity is resolved to a very high
accuracy in the pseudo-spectral method while it is resolved
by only a few large steps in contour surgery. This in turn
enables contour surgery much more resolution of filaments
without being bound by the dissipation scale.

We are now going to discuss the slight discrepancies
between the two experiments which are basically related
to the question of long-term predictability and not to
numerics. Figure 5 compares enlargements of the vortex
near the stagnation point in both experiments at 1= 10, As
mentioned earlier, the contours almost coincide. They do,
up to the accuracy of the plot for the three innermost
contours of the vortex core. The outermost contours are
engaged in the stripping process. They are apparently less
numerous in the contour surgery experiment (where only

two are visible) than in the pseudo-spectral counterpart,

where one can count five. The reason is that, in the inviscid
limit, stripping removes almost completely the outermost
vorticity levels from the vortex [13]. Consequently, vor-
ticity levels tend to pile on a single contour on the core
boundary. Contour surgery is perfectly able to represent this
inviscid process and five contours have merged on the core
boundary in Fig. 5b. The innermost of the five separates and
becomes visible on the internal side of the expelled filament.
On the contrary, the pseudo-spectral method is bound by its
dissipation scale and piling, like that seen in the contour
surgery experiment, is impossible. Nevertheless, the high
resolution used here allows very steep vorticity gradients to
develop on the boundary of the core, and the two boundaries
in Figs. 5a and b, as well as the expelled filaments, are in
excellent agreement at this stage.

Note that the analyticity of the 2D Euler equations [ 19]
prevents an initiaily smooth vorticity profile to become dis-
continuous in finite time. Correspondingly, for piccewise-
constant vorticity, the recent proof of contour regularity
[18] implies that contours cannot approach faster than
super-exponentially [20]. However, this rate of approach
means that contours can rapidly become indistinguishable,
or that continuous vorticity can become virtually discon-
tinuous.
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FIG. 4. Vorticity charts taken from the contour surgery experiment using eight-level discretization. The contours are the same as in Fig. 3. The frame
of the charts is the full periodic box for (a) and the domain [ —06r,0.6x]x [ —0.6xn,0.6n] for the other cases: (a) 1=10; (b) +=15.5; (c) 1=17.5;
(d)r=21:(e) r=235 () r=25.



FIG. 5. Enlargement and comparison of the flow at 1=10: (a) the
pseudo-spectral experiment; (b) the eight-level contour surgery experi-
ment.

The re-entering filament crosses the upper part of the
figures. These filaments are essentially passive structures in
the flow induced by the combination of the vortex and the
shear, but there exists also a slight contribution of the
filaments to their own dynamics. This is particularly visible
near the tips of filaments in Fig. 5b, where they tend to roll
up and induce a kink in the nearby contours. This effect is
typical of the dynamics at the extremity of a finite vorticity
strip [11] and rehes on short-range interactions. This is a
consequence of the discretization of the vorticity profile and
is not visible in the pseudo-spectral calculation. Figure 6
compares the vorticity distribution calculated by contour
surgery with the 16-level discretization and the corre-
sponding chart from the pseudo-spectral case using the
same plotting levels. While some effects near the tip of
filaments are still visible in Fig. 6b, the slight discrepancies
between the two experiments are significantly reduced,
compared to Fig. 5.
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FIG. 6. Same as in Fig. 5 except for the 16-level contour surgery
experiment.

4.2, Quantificarion by Moments

Detaiied inspection of the time sequence partly shown in
Figs. 3 and 4 reveals that the shapes of the vortex cores in
the two experiments, although very similar, are not identical
for > 12. In order to give a quantitative account of the dif-
ference, we measured the moments of the vorticity distribu-
tion with respect to the center of the vortex. If we denote by
D, the domain enclosed within the vorticity contour w = w,
(D, may not be connected), we define the associated
moments [6] as

M ldxdy, m=1,2, .., (11)

where z=x+iy and x and p are.the coordinates with
respect to the center of the box. These moments are the coef-
ficients of the Laurent series of the velocity field exterior to
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D,.. In this form, they are easily estimated by a summation
on the collocation grid in the physical domain. In the con-
tour surgery code, the equivalent contour representation is
used,

i

R (g
mk = " dz* 5
Zm “,

x (12)

where %, is the bounding contour (or contours) of D, and
* denotes complex conjugation. The first moment 2, is
purely real and is in fact the area of the domain D,. This is
theoretically an inviscid constant, owing to material conser-
vation of vorticity and incompressibility. The second
moment a,, 1§ proportionai to the centroid of D, and is
automatically zero by definition. The third and higher
moments correspond to elliptical and higher-order defor-
mations of the region D,. The twofold symmetry of the
cxperimental problem further implies that all of the even-
ordered moments are zero (this symmetry was not imposed
in the contour surgery calculation, yet the computed flow
remains very nearly symmetric).

We have selected a few internal contours to present the
quantitative comparison. These contours do not get stripped
from the vortex though they undergo severe deformation,
exciting many of the moments. In the case of eight contours,
the second and third innermost contours have been selected
{hereafter denoted 2:8 and 3:8), and for 16 contours, the
fourth, the fifth, and the sixth have been selected (4:16,
5:16, and 6:16). These five contours are nested following
the relation 2:8 <= 4:16 = 5:16 = 3:8 = 6:16, see Table I.

Figure 7 compares the variation of the area of the five
contours in the two experiments. Each curve shows the area

0.06 - e - irN/

Area increment [shified)

FIG. 7. Area increment, A(r) — A(Q), for the five contour levels com-
pared in the two experiments, The solid curves show the results of the eight-
and 16-level contour surgery calculations, and the dashed curves show the
results of the pseudo-spectral calculation. The curves are shified by multi-
ples of 0.0 to ease visibility. The initial areas A(0) are A,.,=0386,
Ag16=0409, 45.,,=0521, A5, =0.603, and A,.,; =0.639.
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FIG. 8. W[}, ] for the same five contour levels as depicted in Fig. 7.
The curves are shifted.

variation of a given contour with respect to its initial area
given in the caption. The curves are shifted in the vertical
direction to ease comparison. The main result is the
excellent conservation achieved by contour surgery over the
integration time. The relative variation of the areas of con-
tours 2:8 and 3:8 in the interval 0 <7 <25 is less than
22%x 1072 and 1.3 x 1073, respectively, while the variation
for the three 16-ievel contours is less than 7.8 x 10~ in the
interval 0 < ¢« 17.5. In the pseudo-spectral experiment,
higher deviations are observed owing to the dissipative flux
of vorticity across the contours. The maximum variation is
only 3% for the most disturbed contours, 3:8 and 6:16.
Much higher variations are observed for the external con-
tours (not shown) which are tracing the dynamics of the
filaments. For instance, the area of contour 15:16 under-
goes variations of the order of 15%. The better results
obtained for contour surgery are due the ability of this
method to reach very high effective Reynolds numbers by
dynamically refining the resolution at required locations,
whereas the pseudo-spectral method is bound by its basic
resolution.’

Figure 8 shows the variation of the real part of the nor-
malized third-order moment &, = a5, /a3, for the same five
contours as above. Starting from zero, all curves grow in
magnitude to a value near — .15 during the first three units
of time. There is a plateau between 1~ 3 and r= 11 that
corresponds to the quasi-stationary stage of stripping
described above. After t~ 11, a part of each re-entering
original arm begins to slide along the edge of the stripped
vortex core and interacts strongly with the latter, inducing

! Note that the cutoff scale is here larger than the mesh size of the physi-
cal domain since a significant number of modes near the truncation scale
must be devoted 1o the dissipation range. More elaborate subgridscale
parameterizations, like the anticipated vorticity method [15], attempt at
suppressing the dissipation range in order to more fuily exploit the resolu-
tion of the spectral representation.
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shape vacillations on it. Figure 8 demonstrates the agree-
ment of both methods over the whole integration. Note also
that the curves drawn for the five levels are very close. The
reason is that the aspect ratio of the ellipse approximating
each vorticity contour is practically constant over the whole
vortex core. To our knowledge, this phenomenon has not
yet Teceived an appropriate theoretical explanation.

The small discrepancies between the two methods can be
attributed to (1) the finite discretization of the profile in
contour surgery and (2) the slight dissipation in the pseudo-
spectral method. These discrepancies are made more
apparent in Fig. 9, where the differences between pairs of
curves in Fig. § are shown. The differences grow
significantly after =12 when the dynamics becomes more
active but they remain bounded. The observed oscillation
indicates the principal cause of the differences is a phase
shift between the contours in the two calculations. While
some of the differences may be attributed to the redistribu-
tion of circulation by dissipation in the pseudo-spectral
calculation (cf. Fig. 7), the differences are nevertheless
reduced significantly, by a factor of three, when twice as
many contours are used in the contour surgery experiment.

Higher-order statistics are useful to diagnose non-ellipti-
cal deformations. The higher-order moments, however,
must be modified to remove the contribution from the
dominating elliptical deformation of the vortex. Instead of
the moments «;, and «,,, we thus need to consider the
cumulants
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FIG. 9. Normaitzed differences in W[ a3, /o5 between the two simula-
tion methods for the five contour levels compared, where 0;=0.13 is the
rms deviation of R {3, ] over the five levels. The curves are shifted.
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which vanish for an elliptical contour. Figure 10 shows the
real part of the differences between the two methods for ek,
and a%,. The signals remain very small for 1< 11 when
neither a5, or af, are significantly excited. After t = 11, the
vortex core is strongly perturbed and clear non-elliptical
vacillations ensue as seen in Fig. 3e. The discrepancies are
here more pronounced than for the elliptical component of
the deformation with peak values near two standard devia-
tions. Nevertheless, the 16-level discretization shows much
reduced differences up to = 15. It is remarkable that the
improvement of the 16-level discretization over the eight-
level discretization is more apparent on Fig. 10 than on
Fig. 8. It seems likely that this is due to the fact that
low-order deformations can be resolved well with just a few
vorticity levels, and one quickly reaches a plateau with
increasing numbers of levels. That plateau is not so quickly
reached for higher-order deformations. Small-scale Rossby-
wave oscillations within discrete levels are simply absent in
contour surgery. '

R, ]/ o, (shifted)

Rlaar, 1/ 0, (shified)

L
Time

FIG. 10. Normalized differences in {a) H[ oy, /o and (b) Ray, Yo,
between the two simulation methods for the five contour levels compared,
where a,=0003 and ¢,=0003 are the mms deviation of R[5 ] and
R[4, ] over the five levels. The curves are shifted.
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4.3. Long-Time Comparison

Figure 11 shows an enlargement of the vortex at time
t = 17.5 for the eight-level contour surgery and pseudo-spec-
tral experiments. At this time, the folded re-entering fila-
ment has made one and a half rotations around the vortex
core and is partly divided again and torn apart by the cxter-
nal shear. Figure 11 shows the complicated structure of the
embedded foldings near the stagnation point of the velocity
field. As at ¢ = 10, the contours pile onto a single curve in the
contour surgery experiment while they remain spread out
over an observable distance in the pseudo-spectral experi-
ment. This spreading in fact provides a source for further
stripping of the vortex since the weak vorticity created at the
edge of the vortex core is easily removed by the external
shear (at low resolution, this can lead to an undesirably
rapid erosion of the vortex [13]). Such stripping would not

a

A

FIG. 11. Enlargement and comparison of the flow at 1= 17.5: (a) the
pseudo-spectral experiment; (b) the eight level contour surgery experiment,
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occur in contour surgery. The streets of small islands in
Fig. 11a are due to truncation effects and artifacts of the
plotting routine, Several very thin structures which are
visible in contour surgery are missing in the pseudo-spectral
experiment where they have been dissipated. On the left side
of Fig. 11b, one agains see rollup at the filament tip in the
contour surgery experiment,

In addition to these details there exists also a larger scale
discrepancy seen as a stronger folding of the filaments in the
pseudo-spectral experiment than in the contour surgery one
near the center and on the right part of Fig. 11b. It is well
known that a vacillating elliptical vortex induces chaotic
Lagrangian trajectories [17]. This has been demonstrated
for periodic oscillations but is a fortiori true for non-peri-
odic ones. The essential ingredients for this chaos are (1)
sensitivity of trajectories near the hyperbolic stagnation
point and (2) reinjection of material along the separatrices

FIG. 12. Same as in Fig. 1t except for the 16-level contour surgery
experiment.
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of the mean flow. The residence time of a particle near the
stagnation point and its exit along one of the two unstable
directions can be governed by small amplitude perturba-
tions. [t is thus likely that the slight discrepancies due to the
discretization of the distributed vorticity profile in contour
surgery or the arrested gradient intensification in the
pseudo-speciral method are strongly amplified in this
region. These discrepancies are nevertheless less noticeable
when the resolution of the discrete profile increases, as seen,
for instance, in Fig. 12. The effects of contour piling and
dissipation of thin structures are still vistble here but the
agreement between the two experiments has also been
significantly improved over that shown in Fig. 11.

At later times, the repeated folding and stretching of
filaments generates a cascade to smaller and smaller scale

F1G. 13. Enlargement and comparison of the flow at r=23.5: {a} the
pseudo-spectral experiment; (b) the eight-level contour surgery experi-
ment.
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structures around the vortex while the core retains its initial
profile. The small scales are smoothed out in the pseudo-
spectral simulation. Figures 3h and i show that many details
are lost between r=21 and ¢ =23.5 on the periphery of the
vortex. In contour surgery, some of these details are
removed by surgery, though significantly fewer than in the
pseudo-spectral experiment. The price to pay is, however,
the introduction of many new points which make the
calculation more and more costly as time proceeds. For this
reason, only the eight-level discretization is used for 1> 17.5.

An enlargement at /= 23.5 is shown in Fig. 13. It is still
remnarkable that the two vorticity distributions are in such
good agresment in spite of the long integration time. Much
greater detail is visible in the contour surgery experiment
than in the pseudo-spectral one. See, for instance, the com-
plicated foldings occurring near the stagnation point or the
cascade of filamentation near the center of the enlargement

FI1G. 14. Further enlargement and comparison at r = 23.5.
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in Fig. 13b, both of which are absent in Fig. 13a. The most
noticeable discrepancies are visible on the re-entering
filaments which are enlarged in Fig. 14. The different loca-
tions and amplitudes of the folds can be traced back 1o the
passage of the filaments near the stagnation point. They are
the consequence of the sensitive dynamics described above.
As a consequence, the approach of the vortex by the re-
entering filaments occurs differently at /=25 in the two
experiments, Tn Fig. 3j, a single fold develops on the incident
side of the vortex and a complicated folded structure is seen
above and below the stagnation point, while in Fig. 4f two
folds are formed on the incident side and the folded struc-
ture has already been torn apart. [t is clear that these effects
lead to stronger and stronger differences at later times. It is
also clear that the essence of these differences is not numeri-
cal but rather the chaotic nature of the dynamics which
implies exponential amplification of small perturbations.

5. DISCUSSION

The main result of this article is the mutual validation of
the pseudo-spectral and contour surgery algorithms in an
experiment involving the stripping of a distributed vortex
with subsequent complex interactions between the vortex
core and the stripped filaments. In contour surgery, a con-
tinuous profile of vorticity has to be discretized with a finite
and small number of steps (here, 8 or 16). Nevertheless, no
significant spurious dynamical behaviour is observed in the
contour surgery experiment. On the contrary an excellent
quantitative agreement is obtained beiween the two types of
simulation, up to very small scales of motion.

The small differences are due to the ability of contour sur-
gery to resolve much smaller scales than the pseudo-spectral
method. Contour surgery can describe sharpening of vortex
edges by stripping and the cascade of filamentation several
ranges of scales beyond what can be done with the
pseudo-spectral method. The resclution used here in the
pseudo-spectral calculation is close to the state-of-the-art
limit for this kind of study.

The discretization of vorticity within contour surgery is
not without its side effects. The first is the overly dynamical
behavior of the tips of filaments, seen in Fig. 5b, for exam-
ple. Here, the discrete nature of the vorticity field 15 most
noticeable. A second is the slight inaccuracy in representing
waves on the contours within the vortex core. Both effects
are reduced substantially by doubling the number of con-
tours used, indicating rapid convergence to the theoretical
continuum behavior.

This convergence is more rapid than indicated by the
seemingly coarse representation of the vorticity. The
essential point is that the representation of the velocity is
far better; the difference between the velocity field corre-

5817/104/2-2
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sponding to a continuous distribution of vorticity and one
corresponding to a discretization of this distribution into N
levels scales as 1/N?, indicating a quadratic convergence to
the continuum behaviour. It is the velocity field, after all,
which is responsible for the evolution of the vorticity
distribution.

A corollary based on additional comparisons not shown
here is the surprising lack of sensitivity of the complicated
dynamical processes investigated in this paper to the
detailed profile of the vortex, provided essential invariants
are the same, This is another illustration of the domination
of large scales in two-dimensional flows.

We do not intend to say that one method is superior to
the other in all circumstances. The pseudo-spectral method
1s a general purpose algorithm which has been widely used
in turbulence studies, where there exist many vortices and
appreciable vorticity between the vortices, in particular for
strong forcing [9). In this case, uniform resolution may be
a desirable property when it is difficult, if not impossible, to
encompass a {low within a hierarchy of structures. Contour
surgery, on the contrary, is suited to practically inviscid,
uniforced, vortex-dominated flows, wherein sharp vorticity
gradients are commonplace and localized vortices control
essentially the entire flow evolution. Processes like filamen-
tation [4,5] and stripping [13], which involve a wide
range of spatial scales, can be handled efficiently, and
contour surgery is ideal for the study of simple vortex inter-
actions [ 8, 7). Moreover, with the recent development of
“moment-accelerated contour surgery” [6], it is now
possible to cope with a large number of structures and thus
to investigate some of the mechanisms of 2D turbulence at
much higher Reynolds numbers than those accessible to the
pseudo-spectral method.
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